6533b833fe1ef96bd129ba0e
RESEARCH PRODUCT
Biopolyester-based systems containing naturally occurring compounds with enhanced thermooxidative stability
Rossella ArrigoNadka Tzankova DintchevaElisabetta Moricisubject
Hot TemperatureCoumaric AcidsPolyestersBiophysicsBiomedical EngineeringBioengineering02 engineering and technologyOxidative phosphorylationNaturally occurring stabilizers010402 general chemistryCoumaric acid01 natural sciencesPolylactic acidBiomaterialschemistry.chemical_compoundPolylactic acidDifferential scanning calorimetryVanillic acidthermo-oxidative stabilityOrganic chemistryVitamin EBio-based polymer systems; Differential scanning calorimetry; Naturally occurring stabilizers; Polylactic acid; Thermo-oxidation; Coumaric Acids; Hot Temperature; Oxidation-Reduction; Polyesters; Quercetin; Vanillic Acid; Vitamin E; Biophysics; Bioengineering; Biomaterials; Biomedical EngineeringVanillic AcidChemistryOxidation reductionGeneral MedicineBio-based polymer systems021001 nanoscience & nanotechnologyThermo-oxidation0104 chemical sciencesPolyesterPolilactic acidPolyphenolQuercetin0210 nano-technologyOxidation-Reductionnatural stabilizerdescription
Background This work presents a sustainable approach for the stabilization of polylactic acid (PLA) against thermo-oxidative aging. Methods Naturally occurring phenolic and polyphenolic compounds, such as ferulic acid (FerAc), vanillic acid (VanAc), quercetin (Querc) and vitamin E (VitE), were introduced into PLA. Results The preliminary characterization of the systems formulated containing different amounts of natural stabilizers showed that all compounds used acted as plasticizers, leading to a decrease in rheological functions with respect to neat PLA, without significantly modifying the crystallinity of the raw material. The study of the thermo-oxidative behavior of neat PLA and PLA/natural compound systems, performed by spectrometric and thermal analyses, indicated that all stabilizers considered were able to exert a remarkable antioxidant action against thermo-oxidative phenomena. Conclusions All natural compounds considered are thus proposed as ecofriendly stabilizers, to get fully bio-based polymer systems with enhanced thermo-oxidative stability, suitable for biomedical applications.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-01 |