6533b833fe1ef96bd129c3a1
RESEARCH PRODUCT
On the nuclear response of the helium-cooled lithium lead test blanket module in ITER
Giuseppe VellaP.a. Di MaioPierluigi Chiovarosubject
CryostatMaterials scienceMechanical EngineeringNuclear engineeringMonte Carlo methodchemistry.chemical_elementBlanketFusion powerNuclear Energy and EngineeringchemistryTest blanket moduleHCLL-blanketNeutronicsRadiation damageNeutron sourceGeneral Materials ScienceLithiumSettore ING-IND/19 - Impianti NucleariHeliumCivil and Structural Engineeringdescription
Abstract The helium-cooled lithium lead (HCLL) concept has been recently selected as one of the two European reference designs foreseen for the breeding blanket of a demonstration fusion reactor. In particular, within the framework of the research and development activities on this blanket line, an HCLL test blanket module (TBM) has to be designed and manufactured to be implemented in ITER. At the Department of Nuclear Engineering (DIN) of the University of Palermo, a research campaign has been carried out to investigate the nuclear response of HCLL-TBM inside ITER by a numerical approach based on the Monte Carlo method. A realistic 3D heterogeneous model of HCLL-TBM has been set-up and inserted into an ITER 3D semi-heterogeneous one that simulates realistically the reactor lay-out up to the cryostat. A Gaussian-shaped neutron source has been adopted for the calculations. The main features of the HCLL-TBM nuclear response have been determined, paying particular attention to the deposited power and the tritium production rate together with the spatial distribution of their volumetric densities. The radiation damage of the structural material has also been investigated through the evaluation of displacement per atom and helium and hydrogen production rate.
year | journal | country | edition | language |
---|---|---|---|---|
2005-11-01 | Fusion Engineering and Design |