6533b834fe1ef96bd129cda7

RESEARCH PRODUCT

Mathematical logic and quantum finite state automata

Ilze Dzelme-brzia

subject

General Computer ScienceMeasure-many quantum finite-state automataComputational logicMultimodal logicQuantum dot cellular automatonIntermediate logicMeasure-once quantum finite-state automataNonlinear Sciences::Cellular Automata and Lattice GasesTheoretical Computer ScienceAlgebraTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESModular logicComputerSystemsOrganization_MISCELLANEOUSComputer Science::Logic in Computer ScienceQuantum finite automataDynamic logic (modal logic)Automata theoryQuantum finite-state automataFirst-order logicAlgorithmComputer Science::Formal Languages and Automata TheoryMathematicsQuantum cellular automatonComputer Science(all)

description

AbstractThis paper is a review of the connection between formulas of logic and quantum finite-state automata in respect to the language recognition and acceptance probability of quantum finite-state automata. As is well known, logic has had a great impact on classical computation, it is promising to study the relation between quantum finite-state automata and mathematical logic. After a brief introduction to the connection between classical computation and logic, the required background of the logic and quantum finite-state automata is provided and the results of the connection between quantum finite-state automata and logic are presented.

10.1016/j.tcs.2009.01.030http://dx.doi.org/10.1016/j.tcs.2009.01.030