6533b834fe1ef96bd129cdb6
RESEARCH PRODUCT
Pathway analysis of high-throughput biological data within a Bayesian network framework
Cengizhan OzturkJon JonesSenol IsciHasan H. Otusubject
Statistics and ProbabilityComputer scienceHigh-throughput screeningGene regulatory networkcomputer.software_genreModels BiologicalBiochemistrySynthetic dataBiological pathwayBayes' theoremHumansGene Regulatory NetworksCarcinoma Renal CellMolecular BiologyGeneBiological dataMicroarray analysis techniquesGene Expression ProfilingBayesian networkRobustness (evolution)Bayes TheoremPathway analysisKidney NeoplasmsHigh-Throughput Screening AssaysComputer Science ApplicationsGene expression profilingComputational MathematicsComputational Theory and MathematicsCausal inferenceData miningcomputerAlgorithmsSoftwaredescription
Abstract Motivation: Most current approaches to high-throughput biological data (HTBD) analysis either perform individual gene/protein analysis or, gene/protein set enrichment analysis for a list of biologically relevant molecules. Bayesian Networks (BNs) capture linear and non-linear interactions, handle stochastic events accounting for noise, and focus on local interactions, which can be related to causal inference. Here, we describe for the first time an algorithm that models biological pathways as BNs and identifies pathways that best explain given HTBD by scoring fitness of each network. Results: Proposed method takes into account the connectivity and relatedness between nodes of the pathway through factoring pathway topology in its model. Our simulations using synthetic data demonstrated robustness of our approach. We tested proposed method, Bayesian Pathway Analysis (BPA), on human microarray data regarding renal cell carcinoma (RCC) and compared our results with gene set enrichment analysis. BPA was able to find broader and more specific pathways related to RCC. Availability: Accompanying BPA software (BPAS) package is freely available for academic use at http://bumil.boun.edu.tr/bpa. Contact: hotu@bidmc.harvard.edu Supplementary information: Supplementary data are available at Bioinformatics online.
year | journal | country | edition | language |
---|---|---|---|---|
2011-05-05 | Bioinformatics |