6533b834fe1ef96bd129d4eb

RESEARCH PRODUCT

A Model for Low-Cycle Fatigue in Micro-Structured Materials

Vincenzo GulizziIvano BenedettiFrancesco Parrinello

subject

010101 applied mathematics020303 mechanical engineering & transportsMaterials science0203 mechanical engineeringMechanics of MaterialsMechanical EngineeringMicromechanicsGeneral Materials ScienceLow-cycle fatigue02 engineering and technology0101 mathematicsComposite material01 natural sciences

description

A microscale formulation for low-cycle fatigue degradation in heterogeneous materials is presented. The interface traction-separation law is modelled by a cohesive zone model for low-cycle fatigue analysis, which is developed in a consistent thermodynamic framework of elastic-plastic-damage mechanics with internal variables. A specific fatigue activation condition allows to model the material degradation related to the elastic-plastic cyclic loading conditions, with tractions levels lower than the static failure condition. A moving endurance surface, in the classic framework of kinematic hardening, enables a pure elastic behaviour without any fatigue degradation for low levels of cyclic traction. The developed model is then applied to micro-structured materials whose micro-mechanics is analysed using a boundary integral formulation. Preliminary results demonstrate the potential of the developed cohesive model. The future application of the proposed technique is discussed in the framework of multiscale modelling of engineering components and design of micro-electro-mechanical devices (MEMS).

https://doi.org/10.4028/www.scientific.net/kem.827.134