6533b834fe1ef96bd129d4f7

RESEARCH PRODUCT

Eine Bemerkung zum Normenresthomomorphismus $h : K_{\ast} F/2 \longrightarrow H^{\ast} (F, \mathbb{Z}/2)$

A. Pfister

subject

Discrete mathematicsPure mathematicsGeneral MathematicsNorm (mathematics)Mathematical proofMathematics

description

An elementary Galois theoretic proof is given for the fact: An element $b \in \dot{F}$ is a norm from the extension $F (\sqrt{a})$ iff $(a) \cup (b) = 0$ in $H^{2} (F, \mathbb{Z}/2)$. From this it follows easily that h exists. Comments about other proofs and applications to quadratic forms conclude the paper.

https://doi.org/10.1007/s00013-003-4694-0