6533b834fe1ef96bd129e21a

RESEARCH PRODUCT

Multiplicity of ground states for the scalar curvature equation

Andrea SfecciMatteo FrancaFrancesca Dalbono

subject

Multiplicity resultsBubble tower solutions; Fowler transformation; Ground states; Invariant manifold; Multiplicity results; Phase plane analysis; Scalar curvature equation; Shooting methodGround stateMultiplicity resultsInvariant manifoldScalar curvature equation01 natural sciencesBubble tower solutionsCombinatoricsSettore MAT/05 - Analisi Matematica0103 physical sciencesinvariant manifoldground stateScalar curvature equation Ground states Fowler transformation Invariant manifold Shooting method Bubble tower solutions Phase plane analysis Multiplicity resultsFowler transformationMultiplicity result0101 mathematicsphase plane analysiPhase plane analysisPhysicsApplied Mathematics010102 general mathematicsscalar curvature equationShooting methodMultiplicity (mathematics)shooting methodPhase plane analysiGround statesBubble tower solutionbubble tower solutionmultiplicity results.Phase plane analysis010307 mathematical physicsInvariant manifoldScalar curvature

description

We study existence and multiplicity of radial ground states for the scalar curvature equation $$\begin{aligned} \Delta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n, \quad n>2, \end{aligned}$$when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ is bounded above and below by two positive constants, i.e. $$0 0$$, it is decreasing in (0, 1) and increasing in $$(1,+\infty )$$. Chen and Lin (Commun Partial Differ Equ 24:785–799, 1999) had shown the existence of a large number of bubble tower solutions if K is a sufficiently small perturbation of a positive constant. Our main purpose is to improve such a result by considering a non-perturbative situation: we are able to prove multiplicity assuming that the ratio $${\overline{K}}/{\underline{K}}$$ is smaller than some computable values.

10.1007/s10231-019-00877-2http://hdl.handle.net/10447/359124