6533b835fe1ef96bd129ecde

RESEARCH PRODUCT

Robust Mesoporous CoMo/γ-Al2O3 Catalysts from Cyclodextrin-Based Supramolecular Assemblies for Hydrothermal Processing of Microalgae: Effect of the Preparation Method

Anne PonchelRudina BletaBenedetto SchiavoSalvatore SauPaula María De Carvalho Pinto CostaLeonardo InterranteOnofrio ScialdoneSébastien TilloyEric MonflierNatale CorsaroAlberto GiaconiaGiuseppe PipitoneGiuseppe PipitoneAlessandro Galia

subject

Materials science02 engineering and technology010402 general chemistrybiocrude01 natural sciencesHydrothermal circulationCatalysisCopolymer[CHIM]Chemical SciencesGeneral Materials ScienceComputingMilieux_MISCELLANEOUSbiocrude; cyclodextrin; heterogeneous catalysts; hydrothermal liquefaction; microalgaeheterogeneous catalystsmicroalgaeheterogeneous catalystAqueous two-phase systemhydrothermal liquefaction[CHIM.CATA]Chemical Sciences/CatalysisSettore ING-IND/27 - Chimica Industriale E Tecnologica021001 nanoscience & nanotechnologyBiorefinery0104 chemical sciencesHydrothermal liquefactioncyclodextrinChemical engineeringYield (chemistry)Materials Science (all)0210 nano-technologyMesoporous material

description

Hydrothermal liquefaction (HTL) is a promising technology for the production of biocrude oil from microalgae. Although this catalyst-free technology is efficient under high-temperature and high-pressure conditions, the biocrude yield and quality can be further improved by using heterogeneous catalysts. The design of robust catalysts that preserve their performance under hydrothermal conditions will be therefore very important in the development of biorefinery technologies. In this work, we describe two different synthetic routes (i.e., impregnation and cyclodextrin-assisted one-pot colloidal approach), for the preparation in aqueous phase of six high surface area CoMo/γ-Al2O3 catalysts. Catalytic tests performed on the HTL of Nannochloropsis gaditana microalga indicate that solids prepared by the one-pot colloidal approach show higher hydrothermal stability and enhanced biocrude yield with respect to the catalyst-free test. The positive effect of the substitution of the block copolymer Tetronic T90R4 for Pluronic F127 in the preparation procedure was evidenced by diffuse reflectance UV-visible spectroscopy, X-ray diffraction, N2-adsorption-desorption, and H2-temperature-programmed reduction measurements and confirmed by the higher quality of the obtained biocrude, which exhibited lower oxygen content and higher-energy recovery equal to 62.5% of the initial biomass. © 2018 American Chemical Society.

https://doi.org/10.1021/acsami.7b16185