6533b835fe1ef96bd129f460

RESEARCH PRODUCT

Wormholes supported by hybrid metric-Palatini gravity

Tomi S. KoivistoGonzalo J. OlmoSalvatore CapozzielloFrancisco S. N. LoboTiberiu Harko

subject

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)High Energy Physics - TheoryNuclear and High Energy Physics010308 nuclear & particles physicsScalar theories of gravitationFOS: Physical sciencesVacuum solutionGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationsymbols.namesakeGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)0103 physical sciencessymbolsf(R) gravityWormhole010306 general physicsAstrophysics - High Energy Astrophysical PhenomenaKlein–Gordon equationScalar fieldAsymptotically flat spacetimeMathematical physics

description

Recently, a modified theory of gravity was presented, which consists of the superposition of the metric Einstein-Hilbert Lagrangian with an $f(\cal R)$ term constructed \`{a} la Palatini. The theory possesses extremely interesting features such as predicting the existence of a long-range scalar field, that explains the late-time cosmic acceleration and passes the local tests, even in the presence of a light scalar field. In this brief report, we consider the possibility that wormholes are supported by this hybrid metric-Palatini gravitational theory. We present here the general conditions for wormhole solutions according to the null energy conditions at the throat and find specific examples. In the first solution, we specify the redshift function, the scalar field and choose the potential that simplifies the modified Klein-Gordon equation. This solution is not asymptotically flat and needs to be matched to a vacuum solution. In the second example, by adequately specifying the metric functions and choosing the scalar field, we find an asymptotically flat spacetime.

10.1103/physrevd.86.127504http://arxiv.org/abs/1209.5862