6533b835fe1ef96bd129f52b
RESEARCH PRODUCT
Mass transportation on sub-Riemannian structures of rank two in dimension four
Zeinab BadreddineZeinab Badreddinesubject
Mathematics - Differential Geometry[ MATH ] Mathematics [math]Rank (linear algebra)Geodesicpolar factorization[MATH] Mathematics [math]01 natural sciencesSquare (algebra)CombinatoricsDimension (vector space)0103 physical sciencesFOS: MathematicsUniqueness0101 mathematicsMass transportation[MATH]Mathematics [math]Mathematical PhysicsComputingMilieux_MISCELLANEOUSMathematicsApplied Mathematics010102 general mathematicsSub-Riemannian geometryDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]010307 mathematical physicsMathematics::Differential GeometryAnalysisOptimal transport problemdescription
International audience; This paper is concerned with the study of the Monge optimal transport problem in sub-Riemannian manifolds where the cost is given by the square of the sub-Riemannian distance. Our aim is to extend previous results on existence and uniqueness of optimal transport maps to cases of sub-Riemannian structures which admit many singular minimizing geodesics. We treat here the case of sub-Riemannian structures of rank two in dimension four.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2017-12-13 |