6533b835fe1ef96bd129ff77
RESEARCH PRODUCT
Formation of ZnO nanowires by anodization under hydrodynamic conditions for photoelectrochemical water splitting
Patricia Batista-grauRita Sánchez-tovarRita Sánchez-tovarR.m. Fernández-domeneJosé García-antónsubject
NanostructureMaterials scienceMorphology (linguistics)Photoelectrocatalyst02 engineering and technology010402 general chemistry01 natural sciencesINGENIERIA QUIMICAZinc oxideMaterials ChemistryWater splittingSpectroscopyPhotocurrentAnodizingHidrodinàmicaSurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsField emission microscopyElectroquímicaHydrodynamic conditionsBicarbonate07.- Asegurar el acceso a energías asequibles fiables sostenibles y modernas para todosChemical engineeringElectrodeWater splittingAnodization0210 nano-technologydescription
[EN] The present work studies the influence of hydrodynamic conditions (from 0 to 5000 rpm) during Zn anodization process on the morphology, structure and photoelectrocatalytic behavior of ZnO nanostructures. For this purpose, analysis with Confocal Laser-Raman Spectroscopy, Field Emission Scanning Electron Microscope (FE-SEM) and photoelectrochemical water splitting tests were performed. This investigation reveals that hydrodynamic conditions during anodization promoted the formation of ordered ZnO nanowires along the surface that greatly enhance its stability and increases the photocurrent density response for water splitting in a 159% at the 5000 rpm electrode rotation speed.
year | journal | country | edition | language |
---|---|---|---|---|
2020-01-15 |