6533b836fe1ef96bd12a06fd
RESEARCH PRODUCT
Study of mechanical properties and mass transfer of agglomerated cork stoppers for sparkling wine conservation.
Kevin Crouvisier-urionsubject
[INFO.INFO-BT] Computer Science [cs]/BiotechnologyLiegeObturateurTransfert de matièreStopperMass transfer[INFO.INFO-BT]Computer Science [cs]/BiotechnologyCorkdescription
The agglomerated cork stopper plays a key role in the preservation of sparkling wines because the gas exchanges (CO2 and O2) between the wine and the external environment depend on the stopper. The objective of this work is to determine the mechanical and barrier properties of agglomerated cork stoppers in order to identify the formulation parameters that can impact these properties, and highlight several critical points, which must be controlled during the process.The characterization of the agglomerated cork structure has revealed a large intergranular porosity, which is greatly reduced when smaller cork granules are used and when the cork is compressed in the bottleneck.The study of the mechanical properties of agglomerated cork shows that the elasticity of the material increases with the hydration of the material, the use of small cork granules and adhesive polymer with a low proportion of crystalline phase. On the other hand, the adhesive content within the agglomerated cork does not seem to have an impact on the mechanical properties.Concerning the transfer properties of agglomerated cork stoppers for sparkling wines, the CO2 diffusion coefficients were measured, for the first time, in the various parts of the stopper (agglomerated body, adhesive film, cork disc). The diffusion is essentially governed by a surface diffusion mechanism through the adhesive network. The more the adhesive network is homogeneous within the agglomerated body and between the two washers, the higher the barrier properties will be. Compression of the cork in the bottleneck greatly increases the barrier properties.Finally, it seems that the mechanical and transfer properties of agglomerated cork are slightly impacted by the aging provided that the network of polyurethane glue is not in contact with a highly concentrated ethanol medium, due to solvolysis phenomena that can occur and thus cause a strong degradation of the barrier and mechanical properties of the material.Keyword: Natural cork, agglomerated cork, structure, mechanical properties, gas transfer, surface diffusion, aging
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2019-07-10 |