6533b836fe1ef96bd12a0998

RESEARCH PRODUCT

Spin projected unrestricted Hartree-Fock ground states for harmonic quantum dots

R. CenniFabio CavaliereBernhard KramerU. De GiovanniniMaura Sassetti

subject

PhysicsMagnetic momentCondensed Matter - Mesoscale and Nanoscale PhysicsQuantum dotMAGNETIC-FIELDTransportUnrestricted Hartree–FockARTIFICIAL ATOMSFOS: Physical sciencesCondensed Matter PhysicsSpin quantum numberSettore FIS/03 - Fisica Della MateriaElectronic Optical and Magnetic MaterialsDIFFUSION MONTE-CARLOCONFIGURATION-INTERACTIONTotal angular momentum quantum numberQuantum mechanicsAngular momentum couplingMesoscale and Nanoscale Physics (cond-mat.mes-hall)MANY-PARTICLE SYSTEMSWave functionGround stateSpin-½

description

We report results for the ground state energies and wave functions obtained by projecting spatially unrestricted Hartree Fock states to eigenstates of the total spin and the angular momentum for harmonic quantum dots with $N\leq 12$ interacting electrons including a magnetic field states with the correct spatial and spin symmetries have lower energies than those obtained by the unrestricted method. The chemical potential as a function of a perpendicular magnetic field is obtained. Signature of an intrinsic spin blockade effect is found.

https://dx.doi.org/10.48550/arxiv.0707.3705