6533b837fe1ef96bd12a204b

RESEARCH PRODUCT

Magnetized relativistic jets and helical magnetic fields

José L. GómezA. FuentesI. Moya-torregrosaJosé-maría MartíManel Perucho

subject

Magnetohydrodynamics (MHD)Astrophysics::High Energy Astrophysical PhenomenaAstrophysics01 natural sciencessymbols.namesakeAstrophysical jetanalytical [Methods]0103 physical sciencesMethods: analytical010303 astronomy & astrophysicsPhysicsJet (fluid)numerical [Methods]ToroidMethods: numerical010308 nuclear & particles physicsAstronomy and AstrophysicsComputational physicsMagnetic fieldAmplitudeMach numberGalaxies: jetsSpace and Planetary ScienceMagnetic fieldssymbolsOblique shockjets [Galaxies]Lorentz force

description

This is the first of a series of two papers that deepen our understanding of the transversal structure and the properties of recollimation shocks of axisymmetric, relativistic, superfast magnetosonic, overpressured jets. They extend previous work that characterized these properties in connection with the dominant type of energy (internal, kinetic, or magnetic) in the jet to models with helical magnetic fields with larger magnetic pitch angles and force-free magnetic fields. In this paper, the magnetohydrodynamical models were computed following an approach that allows studying the structure of steady, axisymmetric, relativistic (magnetized) flows using one-dimensional time-dependent simulations. In these approaches, the relevance of the magnetic tension and of the Lorentz force in shaping the internal structure of jets (transversal structure, radial oscillations, and internal shocks) is discussed. The radial Lorentz force controls the jet internal transversal equilibrium. Hence, highly magnetized non-force-free jets exhibit a thin spine of high internal energy around the axis. The properties of the recollimation shocks and sideways expansions and compressions of the jet result from the total pressure mismatch at the jet surface, which among other factors depends on the magnetic tension and the magnetosonic Mach number of the flow. Hot jets with low Mach number tend to have strong oblique shocks and wide radial oscillations. Highly magnetized jets with large toroidal fields tend to have weaker shocks and radial oscillations of smaller amplitude. In the second paper, we present synthetic synchrotron radio images of the magnetohydrodynamical models that are produced at a post-processing phase, focusing on the observational properties of the jets, namely the top-down emission asymmetries, spine brightening, the relative intensity of the knots, and polarized emission. © ESO 2021.

https://doi.org/10.1051/0004-6361/202037898