6533b837fe1ef96bd12a2911
RESEARCH PRODUCT
Exploring room-temperature transport of single-molecule magnet-based molecular spintronics devices using the magnetic tunnel junction as a device platform
Uzma AmirCarlos Rojas-dottiJosé Martínez-lilloPawan TyagiChristopher Risosubject
Materials scienceSpintronicsbusiness.industryGeneral Chemical Engineeringchemistry.chemical_elementGeneral ChemistryNickelTunnel magnetoresistanceFerromagnetismchemistryTunnel junctionMagnetElectrodeOptoelectronicsSingle-molecule magnetbusinessdescription
A device architecture utilizing a single-molecule magnet (SMM) as a device element between two ferromagnetic electrodes may open vast opportunities to create novel molecular spintronics devices. Here, we report a method of connecting an SMM to the ferromagnetic electrodes. We utilized a nickel (Ni)–AlOx–Ni magnetic tunnel junction (MTJ) with the exposed side edges as a test bed. In the present work, we utilized an SMM with a hexanuclear [Mn6(μ3-O)2(H2N-sao)6(6-atha)2(EtOH)6] [H2N-saoH = salicylamidoxime, 6-atha = 6-acetylthiohexanoate] complex that is attached to alkane tethers terminated with thiols. These Mn-based molecules were electrochemically bonded between the two Ni electrodes of an exposed-edge tunnel junction, which was produced by the lift-off method. The SMM-treated MTJ exhibited current enhancement and transitory current suppression at room temperature. Monte Carlo simulation was utilized to understand the transport properties of our molecular spintronics device.
year | journal | country | edition | language |
---|---|---|---|---|
2019-11-01 | RSC Advances |