6533b837fe1ef96bd12a3243
RESEARCH PRODUCT
An LP-based hyperparameter optimization model for language modeling
Amir Hossein Akhavan RahnamaMehdi TolooNezer Jacob Zaidenbergsubject
FOS: Computer and information sciencesMathematical optimizationPerplexityLinear programmingComputer scienceMachine Learning (stat.ML)02 engineering and technology010501 environmental sciences01 natural sciencesTheoretical Computer ScienceNonlinear programmingMachine Learning (cs.LG)Random searchSimplex algorithmSearch algorithmStatistics - Machine Learning0202 electrical engineering electronic engineering information engineeringFOS: MathematicsMathematics - Optimization and Control0105 earth and related environmental sciencesHyperparameterComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Computer Science - LearningHardware and ArchitectureOptimization and Control (math.OC)Hyperparameter optimization020201 artificial intelligence & image processingLanguage modelSoftwareInformation Systemsdescription
In order to find hyperparameters for a machine learning model, algorithms such as grid search or random search are used over the space of possible values of the models hyperparameters. These search algorithms opt the solution that minimizes a specific cost function. In language models, perplexity is one of the most popular cost functions. In this study, we propose a fractional nonlinear programming model that finds the optimal perplexity value. The special structure of the model allows us to approximate it by a linear programming model that can be solved using the well-known simplex algorithm. To the best of our knowledge, this is the first attempt to use optimization techniques to find perplexity values in the language modeling literature. We apply our model to find hyperparameters of a language model and compare it to the grid search algorithm. Furthermore, we illustrating that it results in lower perplexity values. We perform this experiment on a real-world dataset from SwiftKey to validate our proposed approach.
year | journal | country | edition | language |
---|---|---|---|---|
2018-03-29 |