6533b837fe1ef96bd12a3491

RESEARCH PRODUCT

Refrigeration of an Array of Cylindrical Nanosystems by Flowing Superfluid Helium

David JouDavid JouMichele SciaccaLuca Galantucci

subject

PhysicsCondensed matter physicsQuantum turbulenceRefrigerationConductivityCondensed Matter PhysicsThermal conduction01 natural sciencesNanorefrigerationAtomic and Molecular Physics and Optics010305 fluids & plasmasForced convectionThermal conductivityThermal conductivity0103 physical sciencesHeat transferGeneral Materials ScienceSuperfluid helium010306 general physicsSettore MAT/07 - Fisica MatematicaSuperfluid helium-4

description

We consider the refrigeration of an array of heat-dissipating cylindrical nanosystems as a simplified model of computer refrigeration. We explore the use of He II as cooling fluid, taking into account forced convection and heat conduction. The main conceptual and practical difficulties arise in the calculation of the effective thermal conductivity. Since He II does not follow Fourier’s law, the effective geometry-dependent conductivity must be extracted from a more general equation for heat transfer. Furthermore, we impose the restrictions that the maximum temperature along the array should be less than (Formula presented.) transition temperature and that quantum turbulence is avoided, in order not to have too high heat resistance.

https://doi.org/10.1007/s10909-016-1708-4