6533b838fe1ef96bd12a3ef6
RESEARCH PRODUCT
Interaction of Mitogen-activated Protein Kinases with the Kinase Interaction Motif of the Tyrosine Phosphatase PTP-SL Provides Substrate Specificity and Retains ERK2 in the Cytoplasm
Rafael PulidoÁNgel ZúñigaJosefa ÚBedaJosema Torressubject
Cytoplasmanimal structuresProtein Kinase C-alphaRecombinant Fusion ProteinsCèl·lulesNerve Tissue ProteinsProtein tyrosine phosphataseMitogen-activated protein kinase kinaseTransfectionenvironment and public healthBiochemistrySH3 domainReceptor tyrosine kinaseMAP2K7Substrate SpecificitySerineAnimalsc-RafAmino Acid SequenceMolecular BiologyProtein Kinase CSequence DeletionMitogen-Activated Protein Kinase 1Binding SitesMitogen-Activated Protein Kinase 3biologyCyclin-dependent kinase 2Intracellular Signaling Peptides and ProteinsJNK Mitogen-Activated Protein KinasesCell BiologyCyclic AMP-Dependent Protein KinasesIsoenzymesenzymes and coenzymes (carbohydrates)KineticsBiochemistryAmino Acid SubstitutionCOS CellsCalcium-Calmodulin-Dependent Protein Kinasesbiology.proteinMutagenesis Site-DirectedCyclin-dependent kinase 9CattleMitogen-Activated Protein KinasesProtein Tyrosine PhosphatasesProteïnesdescription
ERK1 and ERK2 associate with the tyrosine phosphatase PTP-SL through a kinase interaction motif (KIM) located in the juxtamembrane region of PTP-SL. A glutathione S-transferase (GST)-PTP-SL fusion protein containing the KIM associated with ERK1 and ERK2 as well as with p38/HOG, but not with the related JNK1 kinase or with protein kinase A or C. Accordingly, ERK2 showed in vitro substrate specificity to phosphorylate GST-PTP-SL in comparison with GST-c-Jun. Furthermore, tyrosine dephosphorylation of ERK2 by the PTP-SLDeltaKIM mutant was impaired. The in vitro association of ERK1/2 with GST-PTP-SL was highly stable; however, low concentrations of nucleotides partially dissociated the ERK1/2.PTP-SL complex. Partial deletions of the KIM abrogated the association of PTP-SL with ERK1/2, indicating that KIM integrity is required for interaction. Amino acid substitution analysis revealed that Arg and Leu residues within the KIM are essential for the interaction and suggested a regulatory role for Ser(231). Finally, coexpression of PTP-SL and ERK2 in COS-7 cells resulted in the retention of ERK2 in the cytoplasm in a KIM-dependent manner. Our results demonstrate that the noncatalytic region of PTP-SL associates with mitogen-activated protein kinases with high affinity and specificity, providing a mechanism for substrate specificity, and suggest a role for PTP-SL in the regulation of mitogen-activated protein kinase translocation to the nucleus upon activation.
year | journal | country | edition | language |
---|---|---|---|---|
1999-01-01 |