6533b838fe1ef96bd12a46e7
RESEARCH PRODUCT
Scaling guidelines of a soliton-based power limiter for 2R-optical regeneration applications
Julien FatomeChristophe Finotsubject
Nonlinear opticsOptical fiberComputer scienceOptical communicationContext (language use)Soliton (optics)Optical power02 engineering and technologySignal01 natural sciences010309 optics020210 optoelectronics & photonics0103 physical sciencesDispersion (optics)0202 electrical engineering electronic engineering information engineeringLimiterElectronic engineeringSelf-phase modulationJitterPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Atomic and Molecular Physics and OpticsPower (physics)ModulationOptical regenerationOptical TelecommunicationOptical Telecommunication.description
International audience; In this work, we report scaling rules for the design of an all-fibered soliton-based power limiter for reamplification and reshaping (2R) regeneration process. In particular, we propose general guidelines to fix the optimum fiber length and initial power of the regenerator. We quantitatively point out the optical power limiting effect of the device enabling a significant reduction of the amplitude jitter of a degraded signal. Influence of the initial level of amplitude jitter is discussed and the results are compared with a self-phase modulation-based configuration working in the normal dispersion regime. Realistic numerical simulations in the context of 160 Gbit/s signals confirm that an efficient improvement of the signal quality can be achieved by means of such a device.
year | journal | country | edition | language |
---|---|---|---|---|
2010-09-01 |