6533b838fe1ef96bd12a4856
RESEARCH PRODUCT
Sequence of lethal events in HeLa cells exposed to the G2 blocking cytolethal distending toxin
Jean De RyckeValérie SertChrystel ComayrasC Tascasubject
HistologyTime FactorsCytolethal distending toxinCell divisionAntimetabolitesCell Survival[SDV]Life Sciences [q-bio]Bacterial ToxinsMitosisApoptosisKINASE CYCLIQUE DEPENDANTEBiologyCyclin BPathology and Forensic MedicineCDC2 Protein KinaseEndoreduplicationHumansCyclin B1PhosphorylationMitosisCentrosomeCell DeathCell growthCell BiologyGeneral MedicineCell cycleFlow CytometryVirologyMolecular biologyImmunohistochemistry[SDV] Life Sciences [q-bio]BromodeoxyuridineMicroscopy FluorescenceCell cultureApoptosisCell DivisionHeLa Cellsdescription
The bacterial cytolethal distending toxin (CDT) was previously shown to block the cell cycle of several cell lines at stage G2 through inactivation of the cyclin-dependent kinase Cdkl and without induction of DNA strand breaks. In the present study, we have analyzed, using various methods of analytical cytometry, the progressive transformation and delayed lethal events in the tumor-derived HeLa cell line temporarily exposed to CDT. The cell proliferation arrest induced by CDT was irreversible but, starting about two days after exposure, the G2 block released partially, concomitantly with a decline in the level of Cdkl phosphorylation. This partial release resulted in endoreduplication, leading to the emergence of a significant subpopulation of cells with a 8C DNA content, and by multipolar abortive mitosis which accounted for the mortality recorded 2 and 3 days after exposure. The other major lethal event was a micronucleation process which started to be significant about 3 days after exposure and amplified later on. Both multipolar abortive mitosis and micronucleation appeared topologically related to centrosomal amplification.
year | journal | country | edition | language |
---|---|---|---|---|
2000-01-01 |