6533b838fe1ef96bd12a5045

RESEARCH PRODUCT

Regression models for multivariate ordered responses via the Plackett distribution

Valentino DardanoniAntonio Forcina

subject

Statistics and ProbabilityNumerical AnalysisMultivariate statisticsGlobal logitsLogistic distributionUnivariateMultivariate normal distributionmultivariate ordered responseProportional oddsBivariate analysisMarginal modelsPlackett distribution.Plackett distributionUnivariate distribution62H05Statistics62J12Statistics::Methodology60E15Statistics Probability and UncertaintyMarginal distributionMultivariate ordered regressionMathematicsMultivariate stable distribution

description

AbstractWe investigate the properties of a class of discrete multivariate distributions whose univariate marginals have ordered categories, all the bivariate marginals, like in the Plackett distribution, have log-odds ratios which do not depend on cut points and all higher-order interactions are constrained to 0. We show that this class of distributions may be interpreted as a discretized version of a multivariate continuous distribution having univariate logistic marginals. Convenient features of this class relative to the class of ordered probit models (the discretized version of the multivariate normal) are highlighted. Relevant properties of this distribution like quadratic log-linear expansion, invariance to collapsing of adjacent categories, properties related to positive dependence, marginalization and conditioning are discussed briefly. When continuous explanatory variables are available, regression models may be fitted to relate the univariate logits (as in a proportional odds model) and the log-odds ratios to covariates.

https://doi.org/10.1016/j.jmva.2008.02.037