6533b838fe1ef96bd12a5076
RESEARCH PRODUCT
Deformations of semisimple Poisson pencils of hydrodynamic type are unobstructed
Guido CarletHessel PosthumaSergey Shadrinsubject
Mathematics - Differential GeometryFOS: Physical sciencesPoisson distribution01 natural sciencessymbols.namesakePoisson bracketMathematics::Quantum Algebra0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics::Representation TheoryMathematics::Symplectic GeometryMathematical PhysicsPencil (mathematics)MathematicsAlgebra and Number TheoryNonlinear Sciences - Exactly Solvable and Integrable Systems010102 general mathematicsMathematical analysisInfinitesimal deformationMathematical Physics (math-ph)Cohomology[ MATH.MATH-DG ] Mathematics [math]/Differential Geometry [math.DG]Nonlinear Sciences::Exactly Solvable and Integrable SystemsDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbols010307 mathematical physicsGeometry and TopologyExactly Solvable and Integrable Systems (nlin.SI)Analysisdescription
We prove that the bihamiltonian cohomology of a semisimple pencil of Poisson brackets of hydrodynamic type vanishes for almost all degrees. This implies the existence of a full dispersive deformation of a semisimple bihamiltonian structure of hydrodynamic type starting from any infinitesimal deformation.
| year | journal | country | edition | language |
|---|---|---|---|---|
| 2015-01-18 |