fitforthem
research groups

research groups network graph visualization

repositories

catalog of the institutional repositories

heritage

selection of collections, museum, cultural sites and ancient books

By continuing your visit to this site, you accept the use of essential cookies.

Read more
6533b838fe1ef96bd12a5076

RESEARCH PRODUCT

Deformations of semisimple Poisson pencils of hydrodynamic type are unobstructed

Guido CarletHessel PosthumaSergey Shadrin

subject

Mathematics - Differential GeometryFOS: Physical sciencesPoisson distribution01 natural sciencessymbols.namesakePoisson bracketMathematics::Quantum Algebra0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics::Representation TheoryMathematics::Symplectic GeometryMathematical PhysicsPencil (mathematics)MathematicsAlgebra and Number TheoryNonlinear Sciences - Exactly Solvable and Integrable Systems010102 general mathematicsMathematical analysisInfinitesimal deformationMathematical Physics (math-ph)Cohomology[ MATH.MATH-DG ] Mathematics [math]/Differential Geometry [math.DG]Nonlinear Sciences::Exactly Solvable and Integrable SystemsDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbols010307 mathematical physicsGeometry and TopologyExactly Solvable and Integrable Systems (nlin.SI)Analysis

description

We prove that the bihamiltonian cohomology of a semisimple pencil of Poisson brackets of hydrodynamic type vanishes for almost all degrees. This implies the existence of a full dispersive deformation of a semisimple bihamiltonian structure of hydrodynamic type starting from any infinitesimal deformation.

yearjournalcountryeditionlanguage
2015-01-18
https://dx.doi.org/10.48550/arxiv.1501.04295
EU flag

FORTHEM European University Alliance is co-funded by the European Union. FIT FORTHEM has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 101017248. The content of this website represents the views of the author only and is his/her sole responsibility; it cannot be considered to reflect the views of the European Commission.

University of Jyväskylä logoUniversity of Jyväskylä's websiteUniversity of Burgundy logoUniversity of Burgundy's websiteUniversity of Mainz logoUniversity of Mainz's websiteUniversity of Palermo logoUniversity of Palermo's websiteUniversity of Latvia logoUniversity of Latvia's website
University of Agder logoUniversity of Agder's websiteUniversity of Opole logoUniversity of Opole's websiteUniversity of Sibiu logoUniversity of Sibiu's websiteUniversity of València logoUniversity of València's website
FORTHEM logoFORTHEM alliance's website