6533b838fe1ef96bd12a51c6

RESEARCH PRODUCT

Evidence of low land surface thermal infrared emissivity in the presence of dry vegetation

José A. SobrinoB. DucheminAlbert OliosoGuillem Soria

subject

Canopy010504 meteorology & atmospheric sciencesLand surface temperature[SDV]Life Sciences [q-bio]0211 other engineering and technologies02 engineering and technologyAtmospheric sciences01 natural sciencesplant canopy[SDV.EE.ECO]Life Sciences [q-bio]/Ecology environment/EcosystemsBarleywheatmedicineEmissivityElectrical and Electronic EngineeringWater content021101 geological & geomatics engineering0105 earth and related environmental sciencesHydrologyThermal infraredNORMALIZED DIFFERNCE VEGETATION INDEX (NDVI)Vegetation15. Life on landGeotechnical Engineering and Engineering Geologynormalized difference vegetation index (NDVI)emissivity[SDE]Environmental SciencesDrynessEnvironmental sciencethermal infraredPlant canopymedicine.symptom

description

International audience; Land surface emissivity in the thermal infrared usually increases when the vegetation amount increases, reaching values that are larger than 0.98. During an experiment in Morocco over dry barley crops, it was found that emissivity may be significantly lower than 0.98 at full cover and that in some situations, it might decrease with increasing amount of vegetation, which was unexpected. Older data acquired in Barrax, Spain, over senescent barley also exhibited emissivity values lower than 0.98. The decrease of emissivity was also observed by means of Simulations done with our land surface emissivity model developed earlier. The main reason for such behavior might be found in low leaf emissivity due to leaf dryness. This letter also stresses that knowledge on leaf and canopy emissivities and on their variation as a function of water content is still very limited.

10.1109/lrgs.2006.885857https://hal.ird.fr/ird-00389431/file/007_Olioso_GRSL.pdf