6533b838fe1ef96bd12a533f
RESEARCH PRODUCT
Semiclassical geons as solitonic black hole remnants
Francisco S. N. LoboDiego Rubiera-garciaDiego Rubiera-garciaGonzalo J. Olmosubject
Electromagnetic fieldHigh Energy Physics - TheoryCosmology and Nongalactic Astrophysics (astro-ph.CO)Event horizonDark matterSemiclassical physicsFOS: Physical sciencesPrimordial black holeGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationGeneral Relativity and Quantum Cosmology0103 physical sciencesWormhole010306 general physicsmodified gravityMathematical physicsPhysics010308 nuclear & particles physicsprimordial black holesAstronomy and Astrophysicsquantum field theory on curved spaceBlack holeHigh Energy Physics - Theory (hep-th)WormholesAstrophysics - Cosmology and Nongalactic Astrophysicsdescription
We find that the end state of black hole evaporation could be represented by non-singular and without event horizon stable solitonic remnants with masses of the order the Planck scale and up to similar to 16 units of charge. Though these objects are locally indistinguishable from spherically symmetric, massive electric (or magnetic) charges, they turn out to be sourceless geons containing a wormhole generated by the electromagnetic field. Our results are obtained by interpreting semiclassical corrections to Einstein's theory in the first-order (Palatini) formalism, which yields second-order equations and avoids the instabilities of the usual (metric) formulation of quadratic gravity. We also discuss the potential relevance of these solutions for primordial black holes and the dark matter problem.
year | journal | country | edition | language |
---|---|---|---|---|
2013-06-11 |