6533b839fe1ef96bd12a5bee

RESEARCH PRODUCT

A Grain-Scale Model of Inter-Granular Stress Corrosion Cracking in Polycrystals

Vincenzo GulizziAlberto MilazzoIvano Benedetti

subject

Materials scienceMechanical EngineeringMetallurgyMicromechanicsStress corrosion cracking02 engineering and technology01 natural sciencesStrength of materials010101 applied mathematics020303 mechanical engineering & transportsPolycrystalline material0203 mechanical engineeringMechanics of MaterialsBoundary element methodMechanics of MaterialGeneral Materials ScienceMaterials Science (all)0101 mathematicsStress corrosion crackingComposite materialCohesive zone modelingMicromechanicScale modelBoundary element methodEnvironmental stress fracture

description

In this contribution, we propose a cohesive grain-boundary model for hydrogen-assisted inter-granular stress corrosion cracking at the grain-scale in 3D polycrystalline aggregates. The inter-granular strength is degraded by the presence of hydrogen and this is accounted for by employing traction-separation laws directly depending on hydrogen concentration, whose diffusion is represented at this stage through simplified phenomenological relationships. The main feature of the model is that all the relevant mechanical fields are represented in terms of grain-boundary variables only, which couples particularly well with the employment of traction-separation laws.

https://doi.org/10.4028/www.scientific.net/kem.754.230