6533b839fe1ef96bd12a5d24

RESEARCH PRODUCT

The Nonbilayer Lipid MGDG and the Major Light-Harvesting Complex (LHCII) Promote Membrane Stacking in Supported Lipid Bilayers.

Hannes WittDennis SeiwertHarald PaulsenSandra RitzAndreas Janshoff

subject

0106 biological sciences0301 basic medicineMicroscopy ConfocalChemistryLipid BilayersStackingLight-Harvesting Protein ComplexesPeasfood and beveragesFluorescence recovery after photobleachingMicroscopy Atomic Force01 natural sciencesBiochemistryLight-harvesting complexDiglycerides03 medical and health sciences030104 developmental biologyGlycolipidMembraneThylakoidConfocal laser scanning microscopyBiophysicslipids (amino acids peptides and proteins)Lipid bilayer010606 plant biology & botany

description

The thylakoid membrane of algae and land plants is characterized by its intricate architecture, comprising tightly appressed membrane stacks termed grana. The contributions of individual components to grana stack formation are not yet fully elucidated. As an in vitro model, we use supported lipid bilayers made of thylakoid lipid mixtures to study the effect of major light-harvesting complex (LHCII), different lipids, and ions on membrane stacking, seen as elevated structures forming on top of the planar membrane surface in the presence of LHCII protein. These structures were examined by confocal laser scanning microscopy, atomic force microscopy, and fluorescence recovery after photobleaching, revealing multilamellar LHCII-membrane stacks composed of connected lipid bilayers. Both native-like and non-native interactions between the LHCII complexes may contribute to membrane appression in the supported bilayers. However, applying in vivo-like salt conditions to uncharged glycolipid membranes drastically increased the level of stack formation due to enforced LHCII-LHCII interactions, which is in line with recent crystallographic and cryo-electron microscopic data [Wan, T., et al. (2014) Mol. Plant 7, 916-919; Albanese, P., et al. (2017) Sci. Rep. 7, 10067-10083]. Furthermore, we observed the nonbilayer lipid MGDG to strongly promote membrane stacking, pointing to the long-term proposed function of MGDG in stabilizing the inner membrane leaflet of highly curved margins in the periphery of each grana disc because of its negative intrinsic curvature [Murphy, D. J. (1982) FEBS Lett. 150, 19-26].

10.1021/acs.biochem.8b00118https://pubmed.ncbi.nlm.nih.gov/29577715