6533b83afe1ef96bd12a6f01

RESEARCH PRODUCT

Regularization operators for natural images based on nonlinear perception models.

Juan Manuel GutiérrezJesús MaloFrancesc J. Ferri

subject

Regularization perspectives on support vector machinesInformation Storage and RetrievalImage processingRegularization (mathematics)Pattern Recognition AutomatedOperator (computer programming)Artificial IntelligenceImage Interpretation Computer-AssistedCluster AnalysisComputer SimulationImage restorationMathematicsModels Statisticalbusiness.industryWavelet transformSpectral density estimationStatistical modelPattern recognitionNumerical Analysis Computer-AssistedSignal Processing Computer-AssistedImage EnhancementComputer Graphics and Computer-Aided DesignNonlinear DynamicsArtificial intelligencebusinessSoftwareAlgorithms

description

Image restoration requires some a priori knowledge of the solution. Some of the conventional regularization techniques are based on the estimation of the power spectrum density. Simple statistical models for spectral estimation just take into account second-order relations between the pixels of the image. However, natural images exhibit additional features, such as particular relationships between local Fourier or wavelet transform coefficients. Biological visual systems have evolved to capture these relations. We propose the use of this biological behavior to build regularization operators as an alternative to simple statistical models. The results suggest that if the penalty operator takes these additional features in natural images into account, it will be more robust and the choice of the regularization parameter is less critical.

10.1109/tip.2005.860345https://pubmed.ncbi.nlm.nih.gov/16435549