6533b83afe1ef96bd12a7010
RESEARCH PRODUCT
Antenna-coupled spintronic terahertz emitters driven by a 1550 nm femtosecond laser oscillator
U. NandiSamridh JaiswalTom SeifertTom SeifertSeyed Mohammedreza RouzegarSeyed Mohammedreza RouzegarOliver GueckstockOliver GueckstockTobias KampfrathTobias KampfrathM. S. AbdelazizGerhard JakobSascha PreuMathias Kläuisubject
Materials sciencePhysics and Astronomy (miscellaneous)Terahertz radiation02 engineering and technology01 natural sciences530law.inventionlawantenna-coupled spintronic terahertz emitterslaser oscillator0103 physical sciencesLaser power scaling010302 applied physicsSpintronicsbusiness.industryDynamic rangePhotoconductivityBandwidth (signal processing)500 Naturwissenschaften und Mathematik::530 Physik::530 Physik021001 nanoscience & nanotechnologyLaserFemtosecondOptoelectronicsterahertz emitters0210 nano-technologybusinessdescription
We demonstrate antenna-coupled spintronic terahertz (THz) emitters excited by 1550 nm, 90 fs laser pulses. Antennas are employed to optimize THz outcoupling and frequency coverage of ferromagnetic/nonmagnetic metallic spintronic structures. We directly compare the antenna-coupled devices to those without antennas. Using a 200 μm H-dipole antenna and an ErAs:InGaAs photoconductive receiver, we obtain a 2.42-fold larger THz peak-peak signal, a bandwidth of 4.5 THz, and an increase in the peak dynamic range (DNR) from 53 dB to 65 dB. A 25 μm slotline antenna offered 5 dB larger peak DNR and a bandwidth of 5 THz. For all measurements, we use a comparatively low laser power of 45 mW from a commercial fiber-coupled system that is frequently employed in table-top THz time-domain systems.We demonstrate antenna-coupled spintronic terahertz (THz) emitters excited by 1550 nm, 90 fs laser pulses. Antennas are employed to optimize THz outcoupling and frequency coverage of ferromagnetic/nonmagnetic metallic spintronic structures. We directly compare the antenna-coupled devices to those without antennas. Using a 200 μm H-dipole antenna and an ErAs:InGaAs photoconductive receiver, we obtain a 2.42-fold larger THz peak-peak signal, a bandwidth of 4.5 THz, and an increase in the peak dynamic range (DNR) from 53 dB to 65 dB. A 25 μm slotline antenna offered 5 dB larger peak DNR and a bandwidth of 5 THz. For all measurements, we use a comparatively low laser power of 45 mW from a commercial fiber-coupled system that is frequently employed in table-top THz time-domain systems.
year | journal | country | edition | language |
---|---|---|---|---|
2019-01-01 |