6533b83afe1ef96bd12a79c3

RESEARCH PRODUCT

Magnetic field-controlled 0−π transitions and their experimental signatures in superconductor-ferromagnet-superconductor junctions

Artjom VarguninArtjom VarguninMikhail SilaevMikhail Silaev

subject

Josephson effectMaterials sciencePhysics and Astronomy (miscellaneous)Field (physics)superconducting devices02 engineering and technologyConductivitymagnetic fieldssuperconductorsmagneettikentät01 natural sciencessuprajohteetCondensed Matter::Materials ScienceCondensed Matter::Superconductivity0103 physical sciencesferromagnetic materialsPerpendicular010302 applied physicsSuperconductivityCondensed matter physicsCondensed Matter - SuperconductivityExchange interaction021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect3. Good healthMagnetic fieldexchange interactionsFerromagnetismCondensed Matter::Strongly Correlated Electrons0210 nano-technology

description

Superconductor-ferromagnet-superconductor Josephson junctions are known to exist in the $0$ and $\pi$ states with the transitions between them controlled by the temperature and ferromagnetic interlayer thickness. We demonstrate that these transitions can be controlled also by the external magnetic field directed perpendicular to the layers. By varying the ratio of diffusion coefficients in superconducting and ferromagnetic layers, these field-controlled transitions can be made detectable for arbitrary large value of the exchange energy in the ferromagnet. We also show that the $0$-$\pi$ transitions in the perpendicular field can be observed as the specific features of the flux-flow conductivity dependencies on the ferromagnetic thickness in accordance with recent experimental results.

http://urn.fi/URN:NBN:fi:jyu-202003032263