6533b83afe1ef96bd12a79df

RESEARCH PRODUCT

Exploring the behavior of vanadium under high-pressure and high-temperature conditions

D. ErrandoneaS. G. MacleodL. BurakovskyD. Santamaria-perezJ. E. ProctorH. CynnM. Mezouar

subject

Condensed Matter - Materials ScienceCondensed Matter::Materials ScienceCondensed Matter::SuperconductivityMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter::Strongly Correlated ElectronsPhysics - Applied PhysicsApplied Physics (physics.app-ph)

description

We report a combined experimental and theoretical study of the melting curve and the structural behavior of vanadium under extreme pressure and temperature. We performed powder x-ray diffraction experiments up to 120 GPa and 4000 K, determining the phase boundary of the bcc-to-rhombohedral transition and melting temperatures at different pressures. Melting temperatures have also been established from the observation of temperature plateaus during laser heating, and the results from the density-functional theory calculations. Results obtained from our experiments and calculations are fully consistent and lead to an accurate determination of the melting curve of vanadium. These results are discussed in comparison with previous studies. The melting temperatures determined in this study are higher than those previously obtained using the speckle method, but also considerably lower than those obtained from shock-wave experiments and linear muffin-tin orbital calculations. Finally, a high-pressure high-temperature equation of state up to 120 GPa and 2800 K has also been determined.

https://dx.doi.org/10.48550/arxiv.1908.05166