6533b850fe1ef96bd12a8346

RESEARCH PRODUCT

Effect of the electromagnetic environment on arrays of small normal metal tunnel junctions: Numerical and experimental investigation

Antti ManninenJukka P. PekolaSh. Farhangfar

subject

PhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsElectromagnetic environmentGeneral Physics and AstronomyConductanceFOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMetalvisual_artLinear arraysCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)visual_art.visual_art_mediumDissipative systemElectrical impedanceQuantum tunnelling

description

We present results of a set of experiments to investigate the effect of dissipative external electromagnetic environment on tunneling in linear arrays of junctions in the weak tunneling regime. The influence of this resistance decreases as the number of junctions in the chain increases and ultimately becomes negligible. Further, there is a value of external impedance, typically \~5 k$\Omega$, at which the half-width of the zero-voltage dip in the conductance curve shows a maximum. Some new analytical formulae, based on the phase-correlation theory, along with numerical results will be presented.

10.1209/epl/i2000-00139-0http://arxiv.org/abs/cond-mat/9910238