6533b850fe1ef96bd12a848f

RESEARCH PRODUCT

The 1-loop effective potential for the Standard Model in curved spacetime

Tommi MarkkanenArttu RajantieSami NurmiStephen Stopyra

subject

High Energy Physics - TheoryDe Sitter spaceVacuum stateUNIVERSEfield theories in higher dimensionskosmologia01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsHigh Energy Physics - Phenomenology (hep-ph)INFLATIONRADIATIVE-CORRECTIONSGauge theoryELECTROWEAK VACUUMMathematical physicsPhysics02 Physical SciencesPhysicshep-thhiukkasfysiikan standardimalliRENORMALIZATION-GROUP EQUATIONShep-phSPONTANEOUS SYMMETRY-BREAKINGNuclear & Particles PhysicsHigh Energy Physics - PhenomenologyHIGGS MASSPhysical SciencesGAUGE-THEORIESMathematics::Differential GeometryNuclear and High Energy Physicsgr-qcFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Curvatureclassical theories of gravityGeneral Relativity and Quantum Cosmology0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityfield theories in lower dimensions010306 general physics01 Mathematical SciencesInflation (cosmology)Science & TechnologySpacetimeSTABILITYta114010308 nuclear & particles physicsgravitaatioLoop (topology)High Energy Physics - Theory (hep-th)INTERACTING SCALAR FIELDlcsh:QC770-798Perturbation theory (quantum mechanics)

description

The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of $\beta$-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which is demonstrated with the example of vacuum stability in de Sitter space.

10.1007/jhep06(2018)040https://doi.org/10.1007/JHEP06(2018)040