6533b851fe1ef96bd12a8d79
RESEARCH PRODUCT
The interaction of Fe(III), adriamycin and daunomycin with nucleotides and DNA and their effects on cell growth of fibroblasts (NIH-3T3)
Eckhard BillEckhard BillItalia Di LiegroA. CestelliBerthold F. MatzankeBerthold F. MatzankeAlfred X. TrautweinAlfred X. Trautweinsubject
MaleBase pairStereochemistryIronIntercalation (chemistry)General Biochemistry Genetics and Molecular BiologyBiomaterialsMiceSpectroscopy Mossbauerchemistry.chemical_compoundmedicineAnimalsNucleotideCytotoxicitychemistry.chemical_classificationChemistryCell growthAcetohydroxamic acidDaunorubicinFishesMetals and AlloysBiological Transport3T3 CellsDNASpermatozoaAdenosine MonophosphateDoxorubicinFerricGeneral Agricultural and Biological SciencesCell DivisionDNAPlasmidsmedicine.drugdescription
The interactions of the iron complexes of the anthracycline antitumour drugs daunomycin (DN) and adriamycin (ADM) with the mononucleotide AMP, herring sperm DNA, plasmic pBR322 and immortalized 3T3 fibroblasts were studied. By means of Mössbauer spectroscopy it was demonstrated that DNA is a powerful ferric iron chelator as compared with AMP, which is not able to compete with DN or acetohydroxamic acid for ferric iron. The difference between AMP and DNA is postulated to be based on the chelate effect. The Mössbauer spectra of the ternary Fe-anthracycline-DNA systems differ from Fe-anthracycline binary complexes, indicating rearrangement reactions. Dialysis experiments clearly disclose the formation of a ternary Fe-ADM-pBR322 complex, the topology of which differs substantially from intercalating ADM. The effect of Fe-ADM complexes (3:1) on the growth of immortalized mouse embryonal fibroblasts (NIH-3T3) was studied in comparison with ADM alone. No significant difference on the inhibition of cell growth was noticed, suggesting comparable cytotoxicity for the compounds. In contrast to literature data, no evidence was found for DNA cleavage by ferric ADM at molar ratios as high as 1/100 (ADM/base pair), even if the ternary systems were prepared in the light and in the presence of reducing or oxidizing agents. Based on our observations it seems that the cytotoxicity of both ADM and Fe-ADM oligomer is not based primarily on intercalation or direct interaction with DNA.
year | journal | country | edition | language |
---|---|---|---|---|
1996-04-01 | Biometals |