6533b851fe1ef96bd12a8da3

RESEARCH PRODUCT

Structural verification and manufacturing procedures of the cooling system, for DEMO divertor target (OVT)

G. MazzoneG. Di GironimoV. ImbrianiD. CoccoreseU. BonavolontaD. MarzulloS. GarittaJ.-h. YouV. CerriE. ValloneP.a. Di MaioA. Tincani

subject

Power stationComputer simulationDesign activitiesDivertor target cooling mock-upNuclear engineeringDivertorMechanical EngineeringDivertor cassetteCADFault (power engineering)01 natural sciences010305 fluids & plasmasNuclear Energy and Engineering0103 physical sciencesWater coolingDEMO; Divertor cassette; Divertor target cooling mock-up; Civil and Structural Engineering; Nuclear Energy and Engineering; Materials Science (all); Mechanical EngineeringGeneral Materials ScienceMaterials Science (all)Test plan010306 general physicsDEMO; Divertor cassette; Divertor target cooling mock-upDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineering

description

The paper presents the design activities and testing plan of a vertical target mock-up, developed within the pre-conceptual design phase for DEMO Work Package DIV-1 “Divertor Cassette Design and Integration” - EUROfusion Power Plant Physics & Technology (PPPT) program. Activities concerning the Divertor Outboard Vertical Target cooling mock-up are presented in term of CAD model, thermal-hydraulic numerical simulation, structural analysis, structural integrity verification and manufacturing procedure. Moreover, the mechanical dimensions of support systems for Plasma Facing Components (PFCs), manifold and diffuser have been analyzed in detail, in order to avoid structural fault during the test. Test procedures are discussed, taking into account design parameters, design code and facility performances. The CuCrZr alloy selected for the PFCs of EU DEMO divertor has been used also for the mock-up, while two options are still under evaluation for manifolds/diffuser, CuCrZr and stainless Steel 316 L(N)-IG, depending on the joining technology. Since the mock-up is mainly intended to verify hydraulic performances, it has been simplified by removing the W monoblocks from its PFCs. © 2019 ENEA Frascati, Fusion & Technology for Nuclear Safety and The Authors

10.1016/j.fusengdes.2019.02.139https://hdl.handle.net/11368/2965316