6533b851fe1ef96bd12a8dad

RESEARCH PRODUCT

Brain-like large scale cognitive networks and dynamics

Maria Carmela LombardoPietro PantanoMarco SammartinoEleonora BilottaFrancesca Bertacchini

subject

0301 basic medicineConnectomicsQuantitative Biology::Neurons and CognitionArtificial neural networkComputer sciencebusiness.industryGeneral Physics and AstronomyCognitionPattern recognitionCognitive network03 medical and health sciencesPhysics and Astronomy (all)030104 developmental biology0302 clinical medicineNeuroimagingConnectomeGeneral Materials ScienceSegmentationAdjacency matrixArtificial intelligenceMaterials Science (all)Physical and Theoretical Chemistrybusiness030217 neurology & neurosurgery

description

A new approach to the study of the brain and its functions known as Human Connectomics has been recently established. Starting from magnetic resonance images (MRI) of brain scans, it is possible to identify the fibers that link brain areas and to build an adjacency matrix that connects these areas, thus creating the brain connectome. The topology of these networks provides a lot of information about the organizational structure of the brain (both structural and functional). Nevertheless this knowledge is rarely used to investigate the possible emerging brain dynamics linked to cognitive functions. In this work, we implement finite state models on neural networks to display the outcoming brain dynamics, using different types of networks, which correspond to diverse segmentation methods and brain atlases. From the simulations, we observe that the behavior of these systems is completely different from random and/or artificially generated networks. The emergence of stable structures, which might correspond to brain cognitive circuits, has also been detected.

10.1140/epjst/e2018-800021-6http://hdl.handle.net/10447/327131