6533b851fe1ef96bd12a9728

RESEARCH PRODUCT

false

subject

0301 basic medicineMultidisciplinaryGeometric analysisComputer sciencebusiness.industryHyperbolic spaceNode (networking)Complex systemNonlinear dimensionality reductionComplex networkTopologyMachine learningcomputer.software_genreNetwork topology01 natural sciences03 medical and health sciences030104 developmental biology0103 physical sciencesEmbeddingArtificial intelligence010306 general physicsbusinesscomputer

description

AbstractThe different factors involved in the growth process of complex networks imprint valuable information in their observable topologies. How to exploit this information to accurately predict structural network changes is the subject of active research. A recent model of network growth sustains that the emergence of properties common to most complex systems is the result of certain trade-offs between node birth-time and similarity. This model has a geometric interpretation in hyperbolic space, where distances between nodes abstract this optimisation process. Current methods for network hyperbolic embedding search for node coordinates that maximise the likelihood that the network was produced by the afore-mentioned model. Here, a different strategy is followed in the form of the Laplacian-based Network Embedding, a simple yet accurate, efficient and data driven manifold learning approach, which allows for the quick geometric analysis of big networks. Comparisons against existing embedding and prediction techniques highlight its applicability to network evolution and link prediction.