6533b851fe1ef96bd12a9753

RESEARCH PRODUCT

Monte Carlo modelling of the polymer glass transition

B. PittelJ. BatoulisK. H. SommerKurt BinderWolfgang Paul

subject

Materials sciencePolymers and PlasticsOrganic ChemistryMonte Carlo methodCondensed Matter PhysicsCondensed Matter::Disordered Systems and Neural NetworksAmorphous solidTime–temperature superpositionMaterials ChemistryDynamic Monte Carlo methodRelaxation (physics)GranularityStatistical physicsGlass transitionLattice model (physics)

description

We are proposing a lattice model with chemical input for the computer modelling of the polymer glass transition. The chemical input information is obtained by a coarse graining procedure applied to a microscopic model with full chemical detail. We use this information on Bisphenol-A-Polycarbonate to predict it's Vogel-Fulcher temperature out of a dynamic Monte Carlo Simulation. The microscopic structure of the lattice model is that of a genuine amorphous material, and the structural relaxation obeys the time temperature superposition.

https://doi.org/10.1002/masy.19930650103