6533b851fe1ef96bd12a97e0

RESEARCH PRODUCT

Rhombi-chain Bose-Hubbard model: Geometric frustration and interactions

Matteo RizziChristine CartwrightGabriele De Chiara

subject

media_common.quotation_subject/dk/atira/pure/subjectarea/asjc/2500/2504FOS: Physical sciencesFrustration02 engineering and technologyQuantum entanglementBose–Hubbard model01 natural sciencesSuperfluidityCondensed Matter - Strongly Correlated ElectronsLuttinger liquidPhase (matter)Quantum mechanics0103 physical sciences010306 general physicsPhase diagrammedia_commonPhysicsCondensed Matter::Quantum GasesQuantum PhysicsStrongly Correlated Electrons (cond-mat.str-el)/dk/atira/pure/subjectarea/asjc/3100/3104021001 nanoscience & nanotechnologyCondensed Matter PhysicsMagnetic fluxElectronic Optical and Magnetic MaterialsQuantum Gases (cond-mat.quant-gas)Condensed Matter::Strongly Correlated ElectronsQuantum Physics (quant-ph)Condensed Matter - Quantum Gases0210 nano-technology

description

We explore the effects of geometric frustration within a one-dimensional Bose-Hubbard model using a chain of rhombi subject to a magnetic flux. The competition of tunnelling, self-interaction and magnetic flux gives rise to the emergence of a pair-superfluid (pair-Luttinger liquid) phase besides the more conventional Mott-insulator and superfluid (Luttinger liquid) phases. We compute the complete phase diagram of the model by identifying characteristic properties of the pair-Luttinger liquid phase such as pair correlation functions and structure factors and find that the pair-Luttinger liquid phase is very sensitive to changes away from perfect frustration (half-flux). We provide some proposals to make the model more resilient to variants away from perfect frustration. We also study the bipartite entanglement properties of the chain. We discover that, while the scaling of the block entropy pair-superfluid and of the single-particle superfluid leads to the same central charge, the properties of the low-lying entanglement spectrum levels reveal their fundamental difference.

10.1103/physrevb.98.184508https://pure.qub.ac.uk/en/publications/rhombichain-bosehubbard-model-geometric-frustration-and-interactions(c1ea497a-cc10-4999-9bfc-04e59e499cb8).html