6533b851fe1ef96bd12aa127

RESEARCH PRODUCT

Transcriptional regulation of theNε‐fructoselysine metabolism inEscherichia coliby global and substrate‐specific cues

Janosch HennigJürgen LassakThomas HenleRalf HeermannBenedikt Graf Von ArmanspergFranziska KollerMichael HellwigPravin Kumar Ankush JagtapNicola Gericke

subject

0303 health sciencesFructoselysine030306 microbiologyRegulatorRepressorBiologymedicine.disease_causeMicrobiologyCell biology03 medical and health sciencesSigma factorAmadori rearrangementTranscriptional regulationmedicineMolecular BiologyGeneEscherichia coli030304 developmental biology

description

Thermally processed food is an important part of the human diet. Heat-treatment, however, promotes the formation of so-called Amadori rearrangement products, such as fructoselysine. The gut microbiota including Escherichia coli can utilize these compounds as a nutrient source. While the degradation route for fructoselysine is well described, regulation of the corresponding pathway genes frlABCD remained poorly understood. Here, we used bioinformatics combined with molecular and biochemical analyses and show that fructoselysine metabolism in E. coli is tightly controlled at the transcriptional level. The global regulator CRP (CAP) as well as the alternative sigma factor σ32 (RpoH) contribute to promoter activation at high cAMP-levels and inside warm-blooded hosts, respectively. In addition, we identified and characterized a transcriptional regulator FrlR, encoded adjacent to frlABCD, as fructoselysine-6-phosphate specific repressor. Our study provides profound evidence that the interplay of global and substrate-specific regulation is a perfect adaptation strategy to efficiently utilize unusual substrates within the human gut environment.

https://doi.org/10.1111/mmi.14608