6533b852fe1ef96bd12aa39c

RESEARCH PRODUCT

PolyACO+: a multi-level polygon-based ant colony optimisation classifier

Torry TuftelandMorten GoodwinGuro ØDesneltvedtAnis Yazidi

subject

021103 operations researchArtificial neural networkComputer sciencebusiness.industryPolygonsTraining timeMulti-levelling0211 other engineering and technologiesPattern recognition02 engineering and technologyAnt colonySupport vector machineArtificial IntelligenceMultiple time dimensionsPolygonAnt colony optimisation0202 electrical engineering electronic engineering information engineeringArtificial Ants020201 artificial intelligence & image processingArtificial intelligenceClassificationsbusinessClassifier (UML)

description

Ant Colony Optimisation for classification has mostly been limited to rule based approaches where artificial ants walk on datasets in order to extract rules from the trends in the data, and hybrid approaches which attempt to boost the performance of existing classifiers through guided feature reductions or parameter optimisations. A recent notable example that is distinct from the mainstream approaches is PolyACO, which is a proof of concept polygon-based classifier that resorts to ant colony optimisation as a technique to create multi-edged polygons as class separators. Despite possessing some promise, PolyACO has some significant limitations, most notably, the fact of supporting classification of only two classes, including two features per class.This paper introduces PolyACO+, which is an extension of PolyACO in three significant ways: (1) PolyACO+ supports classifying multiple classes, (2) PolyACO+ supports polygons in multiple dimensions enabling classification with more than two features, and (3) PolyACO+ substantially reduces the training time compared to PolyACO by using the concept of multi-leveling. This paper empirically demonstrates that these updates improve the algorithm to such a degree that it becomes comparable to state-of-the-art techniques such as SVM, Neural Networks, and AntMiner+. nivå1

10.1007/s11721-017-0145-6https://hdl.handle.net/10642/5988