6533b852fe1ef96bd12aaa3a
RESEARCH PRODUCT
Structure and dielectric properties of Na0.5Bi0.5TiO3-CaTiO3 solid solutions
Andris SternbergM. DunceR. IgnatansA. PlaudeAlexei KuzminK. KundzinsMaija AntonovaEriks Birkssubject
010302 applied physicsDiffractionMaterials scienceCondensed matter physicsStructure (category theory)General Physics and Astronomy02 engineering and technologyDielectric021001 nanoscience & nanotechnology01 natural sciencesCrystallographyGroup (periodic table)Phase (matter)Distortion0103 physical sciencesOrthorhombic crystal system0210 nano-technologySolid solutiondescription
Despite wide studies of Na0.5Bi0.5TiO3, structure of this material and its connection with the observed physical properties still raise numerous questions due to mutually contradicting results obtained. Here, structure and dielectric properties of poled and unpoled Na0.5Bi0.5TiO3-CaTiO3 solid solutions are studied, projecting the obtained concentration dependence of structure and dielectric properties on pure Na0.5Bi0.5TiO3 as the end member of this material group. X-ray diffraction patterns for Na0.5Bi0.5TiO3-CaTiO3 solid solutions reveal dominating of an orthorhombic Pnma phase, even for the compositions approaching the end composition (Na0.5Bi0.5TiO3), whereas structure of pure Na0.5Bi0.5TiO3 can be considered, assuming coexistence of rhombohedral and orthorhombic phases. This allows one to avoid appearance of a large difference of rhombohedral distortions between the unpoled and poled Na0.5Bi0.5TiO3, if the rhombohedral distortion is calculated as for single R3c phase. Features of dielectric permittiv...
year | journal | country | edition | language |
---|---|---|---|---|
2016-02-21 | Journal of Applied Physics |