6533b852fe1ef96bd12aab38
RESEARCH PRODUCT
Using CFD to derive reduced order models for heat transfer in particle curtains
Sepideh AfsharMadoc SheehanAmir Fazlollahisubject
ConvectionDrag coefficientMaterials scienceConvective heat transferMass flowHeat transferMass flow rateParticleThermodynamicsMechanicsParticle sizeCondensed Matter PhysicsComputer Science Applicationsdescription
3–D Eulerian–Eulerian CFD is used to simulate convective heat transfer in free falling particle curtains. Total heat loss for curtaining particles is compared to heat loss for isolated single particles. Spherical silica particles with density of 2,634 kg/m³ at 400 K (200 µm, 400 µm and 600 µm) flow at approximately 0.041 kg/s to 0.2 kg/s through a narrow slot in a rectangular box (0.45 m × 0.9 m × 0.225 m) filled with ambient air. The slot sizes through which the particles enter the rectangular box were 10 to 80 mm wide. Modifying the slot size at 0.041 kg/s for 400 µm particles can lead to 13% increases in rates of convective heat transfer per unit mass. A reduced order model was developed to predict the centreline temperatures of particles in the falling curtains. The drag coefficient in the ROM was varied to suit a range of particle sizes and mass flow rates.
year | journal | country | edition | language |
---|---|---|---|---|
2015-01-01 | Progress in Computational Fluid Dynamics, An International Journal |