6533b852fe1ef96bd12aaf17
RESEARCH PRODUCT
Plasmon excitations in chemically heterogeneous nanoarrays
Volodymyr TurkowskiNeha NayyarMartti J. PuskaTalat S. RahmanTalat S. RahmanKevin ConleyTuomas P. RossiMikael Kuismasubject
PhysicsNanostructureAtom and Molecular Physics and Opticstiheysfunktionaaliteoria02 engineering and technologyCondensed Matter Physics021001 nanoscience & nanotechnology01 natural scienceskvasihiukkasetplasmonitOptical phenomenananorakenteetImpurityChemical physics0103 physical sciencesQuasiparticleDensity functional theorynanohiukkaset010306 general physics0210 nano-technologyQuantumPlasmonLocalized surface plasmondescription
| openaire: EC/H2020/838996/EU//RealNanoPlasmon The capability of collective excitations, such as localized surface plasmon resonances, to produce a versatile spectrum of optical phenomena is governed by the interactions within the collective and single-particle responses in the finite system. In many practical instances, plasmonic metallic nanoparticles and arrays are either topologically or chemically heterogeneous, which affects both the constituent transitions and their interactions. Here, the formation of collective excitations in weakly Cu- and Pd-doped Au nanoarrays is described using time-dependent density functional theory. The additional impurity-induced modes in the optical response can be thought to result from intricate interactions between separated excitations or transitions. We investigate the heterogeneity at the impurity level, the symmetry aspects related to the impurity position, and the influence of the impurity position on the confinement phenomena. The chemically rich and symmetry-dependent quantum mechanical effects are analyzed with transition contribution maps demonstrating the possibility to develop nanostructures with more controlled collective properties. Peer reviewed
year | journal | country | edition | language |
---|---|---|---|---|
2020-06-11 |