6533b852fe1ef96bd12ab345
RESEARCH PRODUCT
High-Precision Q-Value Measurement Confirms the Potential of 135Cs for Absolute Antineutrino Mass Scale Determination
A. De RoubinJ. KostensaloT. EronenL. CaneteR.p. De GrooteA. JokinenA. KankainenD.a. NesterenkoI.d. MooreS. Rinta-antilaJ. SuhonenM. Vilénsubject
particles and fieldsnuclear physicsneutriinotNuclear Physics - Experimenthiukkasfysiikkaydinfysiikkadescription
The ground-state-to-ground-state β-decay Q value of Cs135(7/2+)→Ba135(3/2+) has been directly measured for the first time. The measurement was done utilizing both the phase-imaging ion-cyclotron resonance technique and the time-of-flight ion-cyclotron resonance technique at the JYFLTRAP Penning-trap setup and yielded a mass difference of 268.66(30) keV between Cs135(7/2+) and Ba135(3/2+). With this very small uncertainty, this measurement is a factor of 3 more precise than the currently adopted Q value in the Atomic Mass Evaluation 2016. The measurement confirms that the first-forbidden unique β--decay transition Cs135(7/2+)→Ba135(11/2-) is a candidate for antineutrino mass measurements with an ultralow Q value of 0.44(31) keV. This Q value is almost an order of magnitude smaller than those of nuclides presently used in running or planned direct (anti)neutrino mass experiment. The ground-state-to-ground-state $\beta$-decay $Q$-value of $^{135}\textrm{Cs}(7/2^+)\to\,^{135}\textrm{Ba}(3/2^+)$ was directly measured for the first time utilizing the Phase-Imaging Ion-Cyclotron Resonance (PI-ICR) technique at the JYFLTRAP Penning-trap setup. It is the first direct determination of this $Q$-value and its value of 268.66(30)\,keV is a factor of three more precise than the currently adopted $Q$-value in the Atomic Mass Evaluation 2016. Moreover, the $Q$-value deduced from the $\beta$-decay endpoint energy has been found to deviate from our result by approximately 6 standard deviations. The measurement confirms that the first-forbidden unique $\beta^-$-decay transition $^{135}\textrm{Cs}(7/2^+)\to\,^{135}\textrm{Ba}(11/2^-)$ is a candidate for antineutrino-mass measurements with an ultra-low $Q$-value of $0.44(31)$ keV. This $Q$-value is almost an order of magnitude smaller than in any presently running or planned direct (anti)neutrino-mass experiment.
year | journal | country | edition | language |
---|---|---|---|---|
2020-02-19 |