6533b852fe1ef96bd12ab783

RESEARCH PRODUCT

Mast cells within cellular networks

Armin BraunArmin BraunAnn-kathrin HartmannSharon Melissa Jiménez DelgadoSharon Melissa Jiménez DelgadoSusann DehmelMichael Stassen

subject

0301 basic medicineCell typeSensory Receptor CellsNeutrophilsT-LymphocytesImmunologyAntigen-Presenting CellsCell CommunicationAdaptive Immunity03 medical and health sciences0302 clinical medicineImmune systemmedicineAnimalsHumansImmunology and AllergyMast CellsAntigen-presenting cellToll-like receptorMHC class IIbiologyAcquired immune systemMast cellAsthmaImmunity InnateEosinophilsCrosstalk (biology)030104 developmental biologymedicine.anatomical_structureImmunologybiology.protein030215 immunology

description

Mast cells are highly versatile in terms of their mode of activation by a host of stimuli and their ability to flexibly release a plethora of biologically highly active mediators. Within the immune system, mast cells can best be designated as an active nexus interlinking innate and adaptive immunity. Here we try to draw an arc from initiation of acute inflammatory reactions to microbial pathogens to development of adaptive immunity and allergies. This multifaceted nature of mast cells is made possible by interaction with multiple cell types of immunologic and nonimmunologic origin. Examples for the former include neutrophils, eosinophils, T cells, and professional antigen-presenting cells. These interactions allow mast cells to orchestrate inflammatory innate reactions and complex adaptive immunity, including the pathogenesis of allergies. Important partners of nonimmunologic origin include cells of the sensory neuronal system. The intimate association between mast cells and sensory nerve fibers allows bidirectional communication, leading to neurogenic inflammation. Evidence is accumulating that this mast cell/nerve crosstalk is of pathophysiologic relevance in patients with allergic diseases, such as asthma.

https://doi.org/10.1016/j.jaci.2019.01.031