6533b852fe1ef96bd12ab98b
RESEARCH PRODUCT
Fatty acids bind to the fungal elicitor cryptogein and compete with sterols
Didier MarionB.f. MaumeMichel PonchetHanan OsmanVladimír MikešJean-pierre BleinMarie-louise MilatS. VauthrinThierry Prangésubject
Phytophthora0106 biological sciencesDouble bondLinoleic acidBiophysics[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyBinding Competitive01 natural sciencesBiochemistryFungal ProteinsLinoleic AcidLIAISON MOLECULAIREStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundStructural BiologyErgosterolGeneticsPlant defense against herbivoryMolecular Biology[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSSterol030304 developmental biologychemistry.chemical_classification0303 health sciencesAlgal ProteinsFatty AcidsProteinsFatty acidLipid–protein interactionElicitinCell BiologyFatty acidElicitinSterol3. Good healthElicitorSterolschemistryBiochemistrylipids (amino acids peptides and proteins)Plant lipid transfer proteinsProtein Binding010606 plant biology & botanydescription
Abstract Cryptogein is a proteinaceous elicitor of plant defense reactions which also exhibits sterol carrier properties. In this study, we report that this protein binds fatty acids. The stoichiometry of the fatty acid–cryptogein complex is 1:1. Linoleic acid and dehydroergosterol compete for the same site, but elicitin affinity is 27 times lower for fatty acid than for sterol. We show that C7 to C12 saturated and C16 to C22 unsaturated fatty acids are the best ligands. The presence of double bonds markedly increases the affinity of cryptogein for fatty acids. A comparison between elicitins and known lipid transfer proteins is discussed.
year | journal | country | edition | language |
---|---|---|---|---|
2001-01-01 |