6533b853fe1ef96bd12acb68

RESEARCH PRODUCT

Fine-tuning the extent and dynamics of binding cleft opening as a potential general regulatory mechanism in parvulin-type peptidyl prolyl isomerases

Zoltán GáspáriPerttu PermiBertalan KovácsAndrás Czajlik

subject

0301 basic medicineFine-tuningentsyymitStaphylococcus aureusparvulinsProtein ConformationParvulinenzymesTrypanosoma brucei bruceibinding cleftIsomeraseisomerasesArticleWW domain03 medical and health sciencesHumansAmino Acid SequenceMode of actionta116Multidisciplinary030102 biochemistry & molecular biologybiologyChemistryDynamics (mechanics)ta1182Peptidylprolyl IsomeraseArchaeaNIMA-Interacting Peptidylprolyl Isomerase030104 developmental biologyOrder (biology)PIN1Biophysicsbiology.proteinProtein Binding

description

AbstractParvulins or rotamases form a distinct group within peptidyl prolyl cis-trans isomerases. Their exact mode of action as well as the role of conserved residues in the family are still not unambiguously resolved. Using backbone S2 order parameters and NOEs as restraints, we have generated dynamic structural ensembles of three distinct parvulins, SaPrsA, TbPin1 and CsPinA. The resulting ensembles are in good agreement with the experimental data but reveal important differences between the three enzymes. The largest difference can be attributed to the extent of the opening of the substrate binding cleft, along which motional mode the three molecules occupy distinct regions. Comparison with a wide range of other available parvulin structures highlights structural divergence along the bottom of the binding cleft acting as a hinge during the opening-closing motion. In the prototype WW-domain containing parvulin, Pin1, this region is also important in forming contacts with the WW domain known to modulate enzymatic activity of the catalytic domain. We hypothesize that modulation of the extent and dynamics of the identified ‘breathing motion’ might be one of the factors responsible for functional differences in the distinct parvulin subfamilies.

10.1038/srep44504http://europepmc.org/articles/PMC5353683