6533b853fe1ef96bd12acc6f

RESEARCH PRODUCT

Peroxisome proliferator-activated receptor γ ligands regulate neural stem cell proliferation and differentiation in vitro and in vivo.

Ana Perez-castilloRosario Luna-medinaJosé A. Morales-garcíaClara Alfaro-cervelloClara Alfaro-cervelloMarta Cortes-canteliJose M. Garcia-verdugoJose M. Garcia-verdugoAngel Santos

subject

Doublecortin Domain ProteinsMalemedicine.medical_specialtyCell SurvivalPeroxisome proliferator-activated receptorNeural Cell Adhesion Molecule L1BiologyCerebral VentriclesRosiglitazoneCellular and Molecular NeuroscienceMicroscopy Electron TransmissionNeural Stem CellsCell MovementInternal medicineNeurosphereGlial Fibrillary Acidic ProteinmedicineAnimalsProgenitor cellRats WistarReceptorCells CulturedCell Proliferationchemistry.chemical_classificationPioglitazoneCaspase 3NeurogenesisNeuropeptidesCell DifferentiationOlfactory BulbNeural stem cellCell biologyRatsPPAR gammaAdult Stem CellsEndocrinologyNeurologychemistryNuclear receptorBromodeoxyuridineSialic AcidsThiazolidinedionesStem cell2'3'-Cyclic-Nucleotide PhosphodiesterasesMicrotubule-Associated Proteins

description

Peroxisome proliferator-activated receptor gamma (PPARγ) belongs to a family of ligand-activated nuclear receptors and its ligands are known to control many physiological and pathological situations. Its role in the central nervous system has been under intense analysis during the last years. Here we show a novel function for PPARγ in controlling stem cell expansion in the adult mammalian brain. Adult rats treated with pioglitazone, a specific ligand of PPARγ, had elevated numbers of proliferating progenitor cells in the subventricular zone and the rostral migratory stream. Electron microscopy analysis also showed important changes in the subventricular zone ultrastructure of pioglitazone-treated animals including an increased number of migratory cell chains. These results were further confirmed in vitro. Neurosphere assays revealed significant increases in the number of neurosphere forming cells from pioglitazone- and rosiglitazone (two specific ligands of PPARγ receptor)-treated cultures that exhibited enhanced capacity for cell migration and differentiation. The effects of pioglitazone were blocked by the PPARγ receptor antagonists GW9662 and T0070907, suggesting that its effects are mediated by a mechanism dependent on PPARγ activation. These results indicate for the first time that activation of PPARγ receptor directly regulates proliferation, differentiation, and migration of neural stem cells in vivo. © 2010 Wiley-Liss, Inc.

10.1002/glia.21101https://pubmed.ncbi.nlm.nih.gov/21125653