6533b853fe1ef96bd12accc6
RESEARCH PRODUCT
Dark sectors with dynamical coupling
Eleonora Di ValentinoOlga MenaSupriya PanWeiqiang Yangsubject
PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsmedia_common.quotation_subjectDark matterCosmic microwave backgroundFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsCoupling (probability)01 natural sciencesSymmetry (physics)UniverseGeneral Relativity and Quantum CosmologyTheoretical physics0103 physical sciences010306 general physicsConstant (mathematics)Energy (signal processing)media_commonDimensionless quantityAstrophysics - Cosmology and Nongalactic Astrophysicsdescription
Coupled dark matter-dark energy scenarios are modeled via a dimensionless parameter $��$, which controls the strength of their interaction. While this coupling is commonly assumed to be constant, there is no underlying physical law or symmetry that forbids a time-dependent $��$ parameter. The most general and complete interacting scenarios between the two dark sectors should therefore allow for such a possibility, and it is the main purpose of this study to constrain two possible and well-motivated coupled cosmologies by means of the most recent and accurate early and late-time universe observations. We find that CMB data alone prefers $��(z) >0$ and therefore a smaller amount of dark matter, alleviating some crucial and well-known cosmological data tensions. An objective assessment of the Bayesian evidence for the coupled models explored here shows no particular preference for the presence of a dynamical dark sector coupling.
year | journal | country | edition | language |
---|---|---|---|---|
2019-06-27 |