6533b854fe1ef96bd12ae01a
RESEARCH PRODUCT
Bis(oxazoline) Lewis Acid Catalyzed Aldol Reactions of PyridineN-Oxide Aldehydes—Synthesis of Optically Active 2-(1-Hydroxyalkyl)pyridine Derivatives: Development, Scope, and Total Synthesis of an Indolizine Alkaloid
Aitor LandaGonzalo BlayGonzalo BlayAnna MinkkiläKarl Anker Jørgensensubject
AldehydesOptics and PhotonicsPyridinesChemistryOrganic ChemistryIndolizinesEnantioselective synthesisTotal synthesisPyridine-N-oxideStereoisomerismGeneral ChemistryOxazolineCatalysisCyclic N-OxidesChemistrychemistry.chemical_compoundAlkaloidsAldol reactionPyridineOrganic chemistryIndolizineEnantiomeric excessAcidsdescription
A new, short, and simplified procedure for the synthesis of optically active pyridine derivatives from pro-chiral pyridine-N-oxides is presented. The catalytic and asymmetric Mukaiyama aldol reaction between ketene silyl acetals and 1-oxypyridine-2-carbaldehyde derivatives catalyzed by chiral copper(II)-bis(oxazoline) complexes gave optically active 2-(hydroxyalkyl)- and 2-(anti-1,2-dihydroxyalkyl)pyridine derivatives in good yields and diastereoselectivities, and in excellent enantioselectivities-up to 99 % enantiomeric excess. As a synthetic application of the developed method, a full account for the asymmetric total synthesis of a nonnatural indolizine alkaloid is provided.
year | journal | country | edition | language |
---|---|---|---|---|
2006-03-21 | Chemistry - A European Journal |